C\u00e1ch t\u00ednh x\u00e1c su\u1ea5t x\u00f3c \u0111\u0129a \u0111\u1ec3 c\u00f3 th\u1ec3 \u0111\u01b0a ra nh\u1eefng quy\u1ebft \u0111\u1ecbnh ch\u00ednh x\u00e1c<\/figcaption><\/figure>\nX\u00f3c \u0111\u0129a l\u00e0 m\u1ed9t tr\u00f2 ch\u01a1i d\u00e2n gian quen thu\u1ed9c v\u00e0 c\u0169ng l\u00e0 m\u1ed9t trong nh\u1eefng tr\u00f2 ch\u01a1i ph\u1ed5 bi\u1ebfn t\u1ea1i c\u00e1c s\u00f2ng b\u1ea1c tr\u1ef1c tuy\u1ebfn nh\u01b0 KUBET, \u0110\u1ec3 t\u0103ng c\u01a1 h\u1ed9i th\u1eafng, vi\u1ec7c hi\u1ec3u v\u00e0 t\u00ednh to\u00e1n x\u00e1c su\u1ea5t trong x\u00f3c \u0111\u0129a l\u00e0 r\u1ea5t quan tr\u1ecdng. B\u00e0i vi\u1ebft n\u00e0y s\u1ebd h\u01b0\u1edbng d\u1eabn b\u1ea1n c\u00e1ch t\u00ednh x\u00e1c su\u1ea5t x\u00f3c \u0111\u0129a \u0111\u1ec3 c\u00f3 th\u1ec3 \u0111\u01b0a ra nh\u1eefng quy\u1ebft \u0111\u1ecbnh ch\u00ednh x\u00e1c h\u01a1n khi ch\u01a1i t\u1ea1i nh\u00e0 c\u00e1i.<\/span><\/p>\nHi\u1ec3u r\u00f5 quy lu\u1eadt c\u1ee7a tr\u00f2 ch\u01a1i x\u00f3c \u0111\u0129a<\/b><\/h3>\n
Tr\u00f2 ch\u01a1i x\u00f3c \u0111\u0129a truy\u1ec1n th\u1ed1ng s\u1eed d\u1ee5ng 4 \u0111\u1ed3ng xu, m\u1ed7i \u0111\u1ed3ng xu c\u00f3 hai m\u1eb7t: m\u1eb7t tr\u1eafng v\u00e0 m\u1eb7t \u0111\u1ecf. C\u00e1c k\u1ebft qu\u1ea3 c\u00f3 th\u1ec3 x\u1ea3y ra bao g\u1ed3m:<\/span><\/p>\n\n- 4 tr\u1eafng<\/span><\/li>\n
- 3 tr\u1eafng 1 \u0111\u1ecf<\/span><\/li>\n
- 2 tr\u1eafng 2 \u0111\u1ecf<\/span><\/li>\n
- 1 tr\u1eafng 3 \u0111\u1ecf<\/span><\/li>\n
- 4 \u0111\u1ecf<\/span><\/li>\n<\/ul>\n
Nh\u01b0 v\u1eady v\u1edbi c\u00e1ch t\u00ednh x\u00e1c su\u1ea5t x\u00f3c \u0111\u0129a, c\u00f3 t\u1ed5ng c\u1ed9ng 5 k\u1ebft qu\u1ea3 c\u00f3 th\u1ec3 x\u1ea3y ra trong m\u1ed7i l\u1ea7n x\u00f3c \u0111\u0129a.<\/span><\/p>\nT\u00ednh x\u00e1c su\u1ea5t c\u1ee7a c\u00e1c k\u1ebft qu\u1ea3<\/b><\/h3>\n
\u0110\u1ec3 t\u00ednh x\u00e1c su\u1ea5t cho t\u1eebng k\u1ebft qu\u1ea3, ch\u00fang ta c\u1ea7n xem x\u00e9t t\u1ed5ng s\u1ed1 k\u1ebft h\u1ee3p c\u00f3 th\u1ec3 c\u1ee7a 4 \u0111\u1ed3ng xu:<\/span><\/p>\n\n- S\u1ed1 k\u1ebft h\u1ee3p c\u1ee7a 4 \u0111\u1ed3ng xu: 24=162^4 = 1624=16<\/span><\/li>\n<\/ul>\n
T\u1eeb \u0111\u00f3, ta c\u00f3 c\u00e1ch t\u00ednh x\u00e1c su\u1ea5t x\u00f3c \u0111\u0129a cho t\u1eebng k\u1ebft qu\u1ea3 c\u1ee5 th\u1ec3 nh\u01b0 sau:<\/span><\/p>\n\n- X\u00e1c su\u1ea5t ra 4 tr\u1eafng: Ch\u1ec9 c\u00f3 1 c\u00e1ch duy nh\u1ea5t ra 4 tr\u1eafng.<\/span>\n
\n- X\u00e1c su\u1ea5t: 116\u22486.25%\\frac{1}{16} \\approx 6.25\\%161\u200b\u22486.25%<\/span><\/li>\n<\/ul>\n<\/li>\n
- X\u00e1c su\u1ea5t ra 3 tr\u1eafng 1 \u0111\u1ecf: C\u00f3 4 c\u00e1ch (m\u1ed7i \u0111\u1ed3ng xu \u0111\u1ecf c\u00f3 th\u1ec3 n\u1eb1m \u1edf 1 trong 4 v\u1ecb tr\u00ed).<\/span>\n
\n- X\u00e1c su\u1ea5t: 416=25%\\frac{4}{16} = 25\\%164\u200b=25%<\/span><\/li>\n<\/ul>\n<\/li>\n
- X\u00e1c su\u1ea5t ra 2 tr\u1eafng 2 \u0111\u1ecf: C\u00f3 6 c\u00e1ch (ch\u1ecdn 2 trong 4 v\u1ecb tr\u00ed \u0111\u1ec3 \u0111\u1eb7t \u0111\u1ed3ng xu \u0111\u1ecf).<\/span>\n
\n- X\u00e1c su\u1ea5t: 616=37.5%\\frac{6}{16} = 37.5\\%166\u200b=37.5%<\/span><\/li>\n<\/ul>\n<\/li>\n
- X\u00e1c su\u1ea5t ra 1 tr\u1eafng 3 \u0111\u1ecf: C\u00f3 4 c\u00e1ch (m\u1ed7i \u0111\u1ed3ng xu tr\u1eafng c\u00f3 th\u1ec3 n\u1eb1m \u1edf 1 trong 4 v\u1ecb tr\u00ed).<\/span>\n
\n- X\u00e1c su\u1ea5t: 416=25%\\frac{4}{16} = 25\\%164\u200b=25%<\/span><\/li>\n<\/ul>\n<\/li>\n
- X\u00e1c su\u1ea5t ra 4 \u0111\u1ecf: Ch\u1ec9 c\u00f3 1 c\u00e1ch duy nh\u1ea5t ra 4 \u0111\u1ecf.<\/span>\n
\n- X\u00e1c su\u1ea5t: 116\u22486.25%\\frac{1}{16} \\approx 6.25\\%161\u200b\u22486.25%<\/span><\/li>\n<\/ul>\n<\/li>\n<\/ul>\n
\u1ee8ng d\u1ee5ng x\u00e1c su\u1ea5t trong \u0111\u1eb7t c\u01b0\u1ee3c<\/b><\/h3>\n
Bi\u1ebft \u0111\u01b0\u1ee3c c\u00e1ch t\u00ednh x\u00e1c su\u1ea5t x\u00f3c \u0111\u0129a c\u1ee7a t\u1eebng k\u1ebft qu\u1ea3, b\u1ea1n c\u00f3 th\u1ec3 \u00e1p d\u1ee5ng v\u00e0o vi\u1ec7c \u0111\u1eb7t c\u01b0\u1ee3c nh\u01b0 sau:<\/span><\/p>\n\n- N\u1ebfu b\u1ea1n mu\u1ed1n an to\u00e0n, h\u00e3y \u0111\u1eb7t c\u01b0\u1ee3c v\u00e0o c\u00e1c k\u1ebft qu\u1ea3 c\u00f3 x\u00e1c su\u1ea5t cao nh\u01b0 2 tr\u1eafng 2 \u0111\u1ecf (37.5%) ho\u1eb7c 3 tr\u1eafng 1 \u0111\u1ecf v\u00e0 1 tr\u1eafng 3 \u0111\u1ecf (25%).<\/span><\/li>\n
- Tr\u00e1nh \u0111\u1eb7t c\u01b0\u1ee3c v\u00e0o c\u00e1c k\u1ebft qu\u1ea3 c\u00f3 x\u00e1c su\u1ea5t th\u1ea5p nh\u01b0 4 tr\u1eafng ho\u1eb7c 4 \u0111\u1ecf (ch\u1ec9 kho\u1ea3ng 6.25%).<\/span><\/li>\n<\/ul>\n
S\u1eed d\u1ee5ng chi\u1ebfn thu\u1eadt \u0111\u1ec3 t\u0103ng c\u01a1 h\u1ed9i th\u1eafng<\/b><\/h3>\n
Ngo\u00e0i vi\u1ec7c \u00e1p d\u1ee5ng c\u00e1ch t\u00ednh x\u00e1c su\u1ea5t x\u00f3c \u0111\u0129a, b\u1ea1n c\u0169ng c\u00f3 th\u1ec3 \u00e1p d\u1ee5ng m\u1ed9t s\u1ed1 chi\u1ebfn thu\u1eadt sau \u0111\u1ec3 t\u0103ng c\u01a1 h\u1ed9i th\u1eafng:<\/span><\/p>\n\n- Chi\u1ebfn thu\u1eadt Martingale: \u0110\u00e2y l\u00e0 chi\u1ebfn thu\u1eadt \u0111\u1eb7t c\u01b0\u1ee3c g\u1ea5p \u0111\u00f4i sau m\u1ed7i l\u1ea7n thua. Khi th\u1eafng, b\u1ea1n s\u1ebd b\u00f9 l\u1ea1i \u0111\u01b0\u1ee3c to\u00e0n b\u1ed9 s\u1ed1 ti\u1ec1n \u0111\u00e3 thua tr\u01b0\u1edbc \u0111\u00f3 v\u00e0 c\u00f3 th\u00eam l\u00e3i.<\/span><\/li>\n
- Chi\u1ebfn thu\u1eadt Fibonacci: D\u1ef1a tr\u00ean d\u00e3y s\u1ed1 Fibonacci, b\u1ea1n t\u0103ng c\u01b0\u1ee3c theo th\u1ee9 t\u1ef1 1, 1, 2, 3, 5, 8, 13, v.v. \u0110i\u1ec1u n\u00e0y gi\u00fap b\u1ea1n ki\u1ec3m so\u00e1t s\u1ed1 ti\u1ec1n c\u01b0\u1ee3c v\u00e0 gi\u1ea3m thi\u1ec3u r\u1ee7i ro.<\/span><\/li>\n
- Chi\u1ebfn thu\u1eadt D’Alembert: T\u0103ng c\u01b0\u1ee3c th\u00eam m\u1ed9t \u0111\u01a1n v\u1ecb sau m\u1ed7i l\u1ea7n thua v\u00e0 gi\u1ea3m m\u1ed9t \u0111\u01a1n v\u1ecb sau m\u1ed7i l\u1ea7n th\u1eafng. Chi\u1ebfn thu\u1eadt n\u00e0y gi\u00fap duy tr\u00ec s\u1ed1 d\u01b0 \u1ed5n \u0111\u1ecbnh h\u01a1n.<\/span><\/li>\n<\/ul>\n